Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 649
Filtrar
1.
Geobiology ; 22(2): e12589, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38465505

RESUMO

The Black Sea is a permanently anoxic, marine basin serving as model system for the deposition of organic-rich sediments in a highly stratified ocean. In such systems, archaeal lipids are widely used as paleoceanographic and biogeochemical proxies; however, the diverse planktonic and benthic sources as well as their potentially distinct diagenetic fate may complicate their application. To track the flux of archaeal lipids and to constrain their sources and turnover, we quantitatively examined the distributions and stable carbon isotopic compositions (δ13 C) of intact polar lipids (IPLs) and core lipids (CLs) from the upper oxic water column into the underlying sediments, reaching deposits from the last glacial. The distribution of IPLs responded more sensitively to the geochemical zonation than the CLs, with the latter being governed by the deposition from the chemocline. The isotopic composition of archaeal lipids indicates CLs and IPLs in the deep anoxic water column have negligible influence on the sedimentary pool. Archaeol substitutes tetraether lipids as the most abundant IPL in the deep anoxic water column and the lacustrine methanic zone. Its elevated IPL/CL ratios and negative δ13 C values indicate active methane metabolism. Sedimentary CL- and IPL-crenarchaeol were exclusively derived from the water column, as indicated by non-variable δ13 C values that are identical to those in the chemocline and by the low BIT (branched isoprenoid tetraether index). By contrast, in situ production accounts on average for 22% of the sedimentary IPL-GDGT-0 (glycerol dibiphytanyl glycerol tetraether) based on isotopic mass balance using the fermentation product lactate as an endmember for the dissolved substrate pool. Despite the structural similarity, glycosidic crenarchaeol appears to be more recalcitrant in comparison to its non-cycloalkylated counterpart GDGT-0, as indicated by its consistently higher IPL/CL ratio in sediments. The higher TEX86 , CCaT, and GDGT-2/-3 values in glacial sediments could plausibly result from selective turnover of archaeal lipids and/or an archaeal ecology shift during the transition from the glacial lacustrine to the Holocene marine setting. Our in-depth molecular-isotopic examination of archaeal core and intact polar lipids provided new constraints on the sources and fate of archaeal lipids and their applicability in paleoceanographic and biogeochemical studies.


Assuntos
Archaea , Éteres de Glicerila , Água , Archaea/química , Mar Negro , Sedimentos Geológicos/química , Glicerol , Lipídeos/química , Água do Mar/química
2.
Cell ; 187(4): 999-1010.e15, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325366

RESUMO

Protein structures are essential to understanding cellular processes in molecular detail. While advances in artificial intelligence revealed the tertiary structure of proteins at scale, their quaternary structure remains mostly unknown. We devise a scalable strategy based on AlphaFold2 to predict homo-oligomeric assemblies across four proteomes spanning the tree of life. Our results suggest that approximately 45% of an archaeal proteome and a bacterial proteome and 20% of two eukaryotic proteomes form homomers. Our predictions accurately capture protein homo-oligomerization, recapitulate megadalton complexes, and unveil hundreds of homo-oligomer types, including three confirmed experimentally by structure determination. Integrating these datasets with omics information suggests that a majority of known protein complexes are symmetric. Finally, these datasets provide a structural context for interpreting disease mutations and reveal coiled-coil regions as major enablers of quaternary structure evolution in human. Our strategy is applicable to any organism and provides a comprehensive view of homo-oligomerization in proteomes.


Assuntos
Inteligência Artificial , Proteínas , Proteoma , Humanos , Proteínas/química , Proteínas/genética , Archaea/química , Archaea/genética , Eucariotos/química , Eucariotos/genética , Bactérias/química , Bactérias/genética
3.
Soft Matter ; 19(33): 6280-6286, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37553974

RESUMO

Apolar lipids within the membranes of archaea are thought to play a role in membrane regulation. In this work we explore the effect of the apolar lipid squalane on the dynamics of a model archaeal-like membrane, under pressure, using neutron spin echo spectroscopy. To the best of our knowledge, this is the first report on membrane dynamics at high pressure using NSE spectroscopy. Increasing pressure leads to an increase in membrane rigidity, in agreement with other techniques. The presence of squalane in the membrane results in a stiffer membrane supporting its role as a membrane regulator.


Assuntos
Archaea , Esqualeno , Pressão Hidrostática , Archaea/química , Esqualeno/química , Pressão , Bicamadas Lipídicas/química
4.
Phys Chem Chem Phys ; 25(24): 16273-16287, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37305972

RESUMO

Archaeal membrane lipids have specific structures that allow Archaea to withstand extreme conditions of temperature and pressure. In order to understand the molecular parameters that govern such resistance, the synthesis of 1,2-di-O-phytanyl-sn-glycero-3-phosphoinositol (DoPhPI), an archaeal lipid derived from myo-inositol, is reported. Benzyl protected myo-inositol was first prepared and then transformed to phosphodiester derivatives using a phosphoramidite based-coupling reaction with archaeol. Aqueous dispersions of DoPhPI alone or mixed with DoPhPC can be extruded and form small unilamellar vesicles, as detected by DLS. Neutron, SAXS, and solid-state NMR demonstrated that the water dispersions could form a lamellar phase at room temperature that then evolves into cubic and hexagonal phases with increasing temperature. Phytanyl chains were also found to impart remarkable and nearly constant dynamics to the bilayer over wide temperature ranges. All these new properties of archaeal lipids are proposed as providers of plasticity and thus means for the archaeal membrane to resist extreme conditions.


Assuntos
Archaea , Lipídeos de Membrana , Archaea/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Lipídeos de Membrana/química , Inositol
5.
Essays Biochem ; 67(4): 731-751, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37341134

RESUMO

(Hyper)thermophilic archaeal glycosidases are enzymes that catalyze the hydrolysis of glycosidic bonds to break down complex sugars and polysaccharides at high temperatures. These enzymes have an unique structure that allows them to remain stable and functional in extreme environments such as hot springs and hydrothermal vents. This review provides an overview of the current knowledge and milestones on the structures and functions of (hyper)thermophilic archaeal glycosidases and their potential applications in various fields. In particular, this review focuses on the structural characteristics of these enzymes and how these features relate to their catalytic activity by discussing different types of (hyper)thermophilic archaeal glycosidases, including ß-glucosidases, chitinase, cellulases and α-amylases, describing their molecular structures, active sites, and mechanisms of action, including their role in the hydrolysis of carbohydrates. By providing a comprehensive overview of (hyper)thermophilic archaeal glycosidases, this review aims to stimulate further research into these fascinating enzymes.


Assuntos
Archaea , Glicosídeo Hidrolases , Glicosídeo Hidrolases/química , Archaea/química , Temperatura Alta , Hidrólise
6.
Prog Lipid Res ; 91: 101237, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37236370

RESUMO

The major archaeal membrane glycerolipids are distinguished from those of bacteria and eukaryotes by the contrasting stereochemistry of their glycerol backbones, and by the use of ether-linked isoprenoid-based alkyl chains rather than ester-linked fatty acyl chains for their hydrophobic moieties. These fascinating compounds play important roles in the extremophile lifestyles of many species, but are also present in the growing numbers of recently discovered mesophilic archaea. The past decade has witnessed significant advances in our understanding of archaea in general and their lipids in particular. Much of the new information has come from the ability to screen large microbial populations via environmental metagenomics, which has revolutionised our understanding of the extent of archaeal biodiversity that is coupled with a strict conservation of their membrane lipid compositions. Significant additional progress has come from new culturing and analytical techniques that are gradually enabling archaeal physiology and biochemistry to be studied in real time. These studies are beginning to shed light on the much-discussed and still-controversial process of eukaryogenesis, which probably involved both bacterial and archaeal progenitors. Puzzlingly, although eukaryotes retain many attributes of their putative archaeal ancestors, their lipid compositions only reflect their bacterial progenitors. Finally, elucidation of archaeal lipids and their metabolic pathways have revealed potentially interesting applications that have opened up new frontiers for biotechnological exploitation of these organisms. This review is concerned with the analysis, structure, function, evolution and biotechnology of archaeal lipids and their associated metabolic pathways.


Assuntos
Archaea , Lipídeos de Membrana , Archaea/química , Archaea/metabolismo , Lipídeos de Membrana/metabolismo , Bactérias/metabolismo , Terpenos/metabolismo , Éteres/química , Éteres/metabolismo
7.
Environ Microbiol ; 25(9): 1644-1658, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37032561

RESUMO

Many Archaea produce membrane-spanning lipids that enable life in extreme environments. These isoprenoid glycerol dibiphytanyl glycerol tetraethers (GDGTs) may contain up to eight cyclopentyl and one cyclohexyl ring, where higher degrees of cyclization are associated with more acidic, hotter or energy-limited conditions. Recently, the genes encoding GDGT ring synthases, grsAB, were identified in two Sulfolobaceae; however, the distribution and abundance of grs homologs across environments inhabited by these and related organisms remain a mystery. To address this, we examined the distribution of grs homologs in relation to environmental temperature and pH, from thermal springs across Earth, where sequences derive from metagenomes, metatranscriptomes, single-cell and cultivar genomes. The abundance of grs homologs shows a strong negative correlation to pH, but a weak positive correlation to temperature. Archaeal genomes and metagenome-assembled genomes (MAGs) that carry two or more grs copies are more abundant in low pH springs. We also find grs in 12 archaeal classes, with the most representatives in Thermoproteia, followed by MAGs of the uncultured Korarchaeia, Bathyarchaeia and Hadarchaeia, while several Nitrososphaeria encodes >3 copies. Our findings highlight the key role of grs-catalysed lipid cyclization in archaeal diversification across hot and acidic environments.


Assuntos
Fontes Termais , Glicerol , Ciclização , Éteres de Glicerila/química , Archaea/genética , Archaea/química , Lipídeos de Membrana/química , Concentração de Íons de Hidrogênio
8.
Semin Cell Dev Biol ; 135: 50-58, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35221208

RESUMO

Exchanging core histones in the nucleosome for paralogous variants can have important functional ramifications. Many of these variants, and their physiological roles, have been characterized in exquisite detail in model eukaryotes, including humans. In comparison, our knowledge of histone biology in archaea remains rudimentary. This is true in particular for our knowledge of histone variants. Many archaea encode several histone genes that differ in sequence, but do these paralogs make distinct, adaptive contributions to genome organization and regulation in a manner comparable to eukaryotes? Below, we review what we know about histone variants in archaea at the level of structure, regulation, and evolution. In all areas, our knowledge pales when compared to the wealth of insight that has been gathered for eukaryotes. Recent findings, however, provide tantalizing glimpses into a rich and largely undiscovered country that is at times familiar and eukaryote-like and at times strange and uniquely archaeal. We sketch a preliminary roadmap for further exploration of this country; an undertaking that may ultimately shed light not only on chromatin biology in archaea but also on the origin of histone-based chromatin in eukaryotes.


Assuntos
Archaea , Histonas , Humanos , Histonas/genética , Archaea/genética , Archaea/química , Nucleossomos/genética , Cromatina , Células Eucarióticas
9.
Sci Adv ; 8(50): eabq8652, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36525503

RESUMO

Bacterial membranes are composed of fatty acids (FAs) ester-linked to glycerol-3-phosphate, while archaea have membranes made of isoprenoid chains ether-linked to glycerol-1-phosphate. Many archaeal species organize their membrane as a monolayer of membrane-spanning lipids (MSLs). Exceptions to this "lipid divide" are the production by some bacterial species of (ether-bound) MSLs, formed by tail-to-tail condensation of FAs resulting in the formation of (iso) diabolic acids (DAs), which are the likely precursors of paleoclimatological relevant branched glycerol dialkyl glycerol tetraether molecules. However, the enzymes responsible for their production are unknown. Here, we report the discovery of bacterial enzymes responsible for the condensation reaction of FAs and for ether bond formation and confirm that the building blocks of iso-DA are branched iso-FAs. Phylogenomic analyses of the key biosynthetic genes reveal a much wider diversity of potential MSL (ether)-producing bacteria than previously thought, with importantt implications for our understanding of the evolution of lipid membranes.


Assuntos
Éter , Glicerol , Archaea/genética , Archaea/química , Bactérias , Lipídeos de Membrana/química , Éteres/química , Ácidos Graxos , Fosfatos
10.
Emerg Top Life Sci ; 6(6): 571-582, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36377774

RESUMO

Archaea constitute one of the three fundamental domains of life. Archaea possess unique lipids in their cell membranes which distinguish them from bacteria and eukaryotes. This difference in lipid composition is referred to as 'Lipid Divide' and its origins remain elusive. Chemical inertness and the highly branched nature of the archaeal lipids afford the membranes stability against extremes of temperature, pH, and salinity. Based on the molecular architecture, archaeal polar lipids are of two types - monopolar and bipolar. Both monopolar and bipolar lipids have been shown to form vesicles and other well-defined membrane architectures. Bipolar archaeal lipids are among the most unique lipids found in nature because of their membrane-spanning nature and mechanical stability. The majority of the self-assembly studies on archaeal lipids have been carried out using crude polar lipid extracts or molecular mimics. The complexity of the archaeal lipids makes them challenging to synthesize chemically, and as a result, studies on pure lipids are few. There is an ongoing effort to develop simplified routes to synthesize complex archaeal lipids to facilitate diverse biophysical studies and pharmaceutical applications. Investigation on archaeal lipids may help us understand how life survives in extreme conditions and therefore unlock some of the mysteries surrounding the origins of cellular life.


Assuntos
Archaea , Lipídeos de Membrana , Archaea/química , Archaea/metabolismo , Lipídeos de Membrana/análise , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Bactérias/química , Bactérias/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo
11.
Int J Mol Sci ; 23(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36142415

RESUMO

The increasing interest for environmentally friendly technologies is driving the transition from fossil-based economy to bioeconomy. A key enabler for circular bioeconomy is to valorize renewable biomasses as feedstock to extract high value-added chemicals. Within this transition the discovery and the use of robust biocatalysts to replace toxic chemical catalysts play a significant role as technology drivers. To meet both the demands, we performed microbial enrichments on two energy crops, used as low-cost feed for extremophilic consortia. A culture-dependent approach coupled to metagenomic analysis led to the discovery of more than 300 glycoside hydrolases and to characterize a new α-glucosidase from an unknown hyperthermophilic archaeon. Aglu1 demonstrated to be the most active archaeal GH31 on 4Np-α-Glc and it showed unexpected specificity vs. kojibiose, revealing to be a promising candidate for biotechnological applications such as the liquefaction/saccharification of starch.


Assuntos
Glicosídeo Hidrolases , alfa-Glucosidases , Archaea/química , Biomassa , Produtos Agrícolas , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Metagenômica , Amido
12.
Biochemistry ; 61(10): 805-821, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35500274

RESUMO

Microbial anaerobic oxidation of alkanes intrigues the scientific community by way of its impact on the global carbon cycle, and its biotechnological applications. Archaea are proposed to degrade short- and long-chain alkanes to CO2 by reversing methanogenesis, a theoretically reversible process. The pathway would start with alkane activation, an endergonic step catalyzed by methyl-coenzyme M reductase (MCR) homologues that would generate alkyl-thiols carried by coenzyme M. While the methane-generating MCR found in methanogens has been well characterized, the enzymatic activity of the putative alkane-fixing counterparts has not been validated so far. Such an absence of biochemical investigations contrasts with the current explosion of metagenomics data, which draws new potential alkane-oxidizing pathways in various archaeal phyla. Therefore, validating the physiological function of these putative alkane-fixing machines and investigating how their structures, catalytic mechanisms, and cofactors vary depending on the targeted alkane have become urgent needs. The first structural insights into the methane- and ethane-capturing MCRs highlighted unsuspected differences and proposed some explanations for their substrate specificity. This Perspective reviews the current physiological, biochemical, and structural knowledge of alkyl-CoM reductases and offers fresh ideas about the expected mechanistic and chemical differences among members of this broad family. We conclude with the challenges of the investigation of these particular enzymes, which might one day generate biofuels for our modern society.


Assuntos
Alcanos , Archaea , Alcanos/metabolismo , Anaerobiose , Archaea/química , Catálise , Mesna/metabolismo , Metano/metabolismo , Oxirredução , Oxirredutases/metabolismo , Filogenia
13.
Adv Biol (Weinh) ; 6(7): e2101323, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35429148

RESUMO

The emergence of the first eukaryotic cell is preceded by evolutionary events, which are still highly debatable. Clues of the exact sequence of events are beginning to emerge. Recent metagenomics analyses has uncovered the Asgard super-phylum as the closest yet known archaea host of eukaryotes. Some of these have been tested and confirmed experimentally. However, the bulk of eukaryotic signature proteins predicted to be encoded by the Asgard super-phylum have not been studied, and their true functions, at least in the context of a eukaryotic cell, are still elusive. For example, there are several different variants of the profilin within each Asgardian Achaea, and there are some conflicting results of their actual roles. Here, the 3D structure of profilin from Thorarchaeota is determined by nuclear magnetic resonance spectroscopy and shows that this profilin has a eukaryotic-like profilin with a rigid core and an extended N-terminus previously implicated in polyproline binding. In addition, it is also shown that Thorarchaeota Profilin co-localizes with eukaryotic actin in cultured HeLa cells. This finding reaffirms the notion that Asgardian encoded proteins possess eukaryotic-like characteristics and strengthen the likely existence of a complex cytoskeleton already in a last eukaryotic common ancestor.


Assuntos
Archaea , Proteínas Arqueais , Profilinas , Archaea/química , Proteínas Arqueais/química , Eucariotos , Genoma Arqueal , Células HeLa , Humanos , Profilinas/química
14.
Proc Natl Acad Sci U S A ; 119(10): e2110415119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238638

RESUMO

SignificanceAmino acids are the building blocks of life and important signaling molecules. Despite their common structure, no universal mechanism for amino acid recognition by cellular receptors is currently known. We discovered a simple motif, which binds amino acids in various receptor proteins from all major life-forms. In humans, this motif is found in subunits of calcium channels that are implicated in pain and neurodevelopmental disorders. Our findings suggest that γ-aminobutyric acid-derived drugs bind to the same motif in human proteins that binds natural ligands in bacterial receptors, thus enabling future improvement of important drugs.


Assuntos
Archaea/química , Proteínas Arqueais/química , Bactérias/química , Proteínas de Bactérias/química , Proteínas de Membrana/química , Motivos de Aminoácidos , Archaea/metabolismo , Proteínas Arqueais/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Humanos , Proteínas de Membrana/metabolismo
15.
Environ Microbiol ; 24(4): 2029-2046, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35106897

RESUMO

Microbes preserve membrane functionality under fluctuating environmental conditions by modulating their membrane lipid composition. Although several studies have documented membrane adaptations in Archaea, the influence of most biotic and abiotic factors on archaeal lipid compositions remains underexplored. Here, we studied the influence of temperature, pH, salinity, the presence/absence of elemental sulfur, the carbon source and the genetic background on the lipid core composition of the hyperthermophilic neutrophilic marine archaeon Pyrococcus furiosus. Every growth parameter tested affected the lipid core composition to some extent, the carbon source and the genetic background having the greatest influence. Surprisingly, P. furiosus appeared to only marginally rely on the two major responses implemented by Archaea, i.e. the regulation of the ratio of diether to tetraether lipids and that of the number of cyclopentane rings in tetraethers. Instead, this species increased the ratio of glycerol monoalkyl glycerol tetraethers (GMGT, aka. H-shaped tetraethers) to glycerol dialkyl glycerol tetraethers in response to decreasing temperature and pH and increasing salinity, thus providing for the first time evidence of adaptive functions for GMGT. Besides P. furiosus, numerous other species synthesize significant proportions of GMGT, which suggests that this unprecedented adaptive strategy might be common in Archaea.


Assuntos
Archaea , Pyrococcus furiosus , Archaea/química , Archaea/genética , Carbono , Glicerol , Lipídeos de Membrana/química , Pyrococcus furiosus/genética
16.
Biomolecules ; 11(12)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34944505

RESUMO

Microorganisms including actinomycetes, archaea, bacteria, fungi, yeast, and microalgae are an auspicious source of vital bioactive compounds. In this review, the existing research regarding antimicrobial molecules from microorganisms is summarized. The potential antimicrobial compounds from actinomycetes, particularly Streptomyces spp.; archaea; fungi including endophytic, filamentous, and marine-derived fungi, mushroom; and microalgae are briefly described. Furthermore, this review briefly summarizes bacteriocins, halocins, sulfolobicin, etc., that target multiple-drug resistant pathogens and considers next-generation antibiotics. This review highlights the possibility of using microorganisms as an antimicrobial resource for biotechnological, nutraceutical, and pharmaceutical applications. However, more investigations are required to isolate, separate, purify, and characterize these bioactive compounds and transfer these primary drugs into clinically approved antibiotics.


Assuntos
Anti-Infecciosos/farmacologia , Fatores Biológicos/farmacologia , Actinobacteria/química , Anti-Infecciosos/classificação , Peptídeos Catiônicos Antimicrobianos/farmacologia , Archaea/química , Bacteriocinas/farmacologia , Fatores Biológicos/classificação , Fungos/química , Microalgas/química
17.
Biochemistry ; 60(41): 3050-3057, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34601881

RESUMO

A transmembrane proton gradient is generated and maintained by proton pumps in a cell. Metagenomics studies have recently identified a new category of rhodopsin intermediates between type-1 rhodopsins and heliorhodopsins, named schizorhodopsins (SzRs). SzRs are light-driven inward proton pumps. Comprehensive resonance Raman measurements were conducted to characterize the structure of the retinal chromophore in the unphotolyzed state of four SzRs. The spectra of all four SzRs show that the retinal chromophore is in the all-trans and 15-anti configuration and that the Schiff base is protonated. The polyene chain is planar in the center of the retinal chromophore and is twisted in the vicinity of the protonated Schiff base. The protonated Schiff base in the SzRs forms a stronger hydrogen bond than that in outward proton-pumping rhodopsins. We determined that the hydrogen-bonding partner of the protonated Schiff base is not a water molecule but an amino acid residue, presumably an Asp residue in helix G. The present observations provide valuable insights into the inward proton-pumping mechanism of SzRs.


Assuntos
Proteínas Arqueais/química , Polienos/química , Bombas de Próton/química , Rodopsinas Microbianas/química , Bases de Schiff/química , Archaea/química , Ligação de Hidrogênio
18.
J Inorg Biochem ; 225: 111588, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34530332

RESUMO

Nickel insertion into nickel-dependent carbon monoxide dehydrogenase (CODH) represents a key step in the enzyme activation. This is the last step of the biosynthesis of the active site, which contains an atypical heteronuclear NiFe4S4 cluster known as the C-cluster. The enzyme maturation is performed by three accessory proteins, namely CooC, CooT and CooJ. Among them, CooJ from Rhodospirillum rubrum is a histidine-rich protein containing two distinct and spatially separated Ni(II)-binding sites: a N-terminal high affinity site (HAS) and a histidine tail at the C-terminus. In 46 CooJ homologues, the HAS motif was found to be strictly conserved with a H(W/F)XXHXXXH sequence. Here, a proteome database search identified at least 150 CooJ homologues and revealed distinct motifs for HAS, featuring 2, 3 or 4 histidines. The purification and biophysical characterization of three representative members of this protein family showed that they are all homodimers able to bind Ni(II) ions via one or two independent binding sites. Initially thought to be present only in R. rubrum, this study strongly suggests that CooJ could play a significant role in CODH maturation or in nickel homeostasis.


Assuntos
Metalochaperonas , Níquel , Aldeído Oxirredutases/genética , Motivos de Aminoácidos , Archaea/química , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Bactérias/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metalochaperonas/química , Metalochaperonas/genética , Metalochaperonas/metabolismo , Complexos Multienzimáticos/genética , Família Multigênica , Níquel/metabolismo , Ligação Proteica
19.
Proteins ; 89(11): 1497-1507, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34216160

RESUMO

The F420 deazaflavin cofactor is an intriguing molecule as it structurally resembles the canonical flavin cofactor, although behaves as a nicotinamide cofactor due to its obligate hydride-transfer reactivity and similar low redox potential. Since its discovery, numerous enzymes relying on it have been described. The known deazaflavoproteins are taxonomically restricted to Archaea and Bacteria. The biochemistry of the deazaflavoenzymes is diverse and they exhibit great structural variability. In this study a thorough sequence and structural homology evolutionary analysis was performed in order to generate an overarching classification of the F420 -dependent oxidoreductases. Five different deazaflavoenzyme Classes (I-V) are described according to their structural folds as follows: Class I encompassing the TIM-barrel F420 -dependent enzymes; Class II including the Rossmann fold F420 -dependent enzymes; Class III comprising the ß-roll F420 -dependent enzymes; Class IV which exclusively gathers the SH3 barrel F420 -dependent enzymes and Class V including the three layer ßßα sandwich F420 -dependent enzymes. This classification provides a framework for the identification and biochemical characterization of novel deazaflavoenzymes.


Assuntos
Archaea/enzimologia , Proteínas Arqueais/química , Bactérias/enzimologia , Proteínas de Bactérias/química , Coenzimas/química , Oxirredutases/química , Riboflavina/análogos & derivados , Archaea/química , Archaea/classificação , Archaea/genética , Proteínas Arqueais/classificação , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Bactérias/química , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Coenzimas/metabolismo , Evolução Molecular , Expressão Gênica , Modelos Moleculares , Oxirredução , Oxirredutases/classificação , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia , Conformação Proteica , Riboflavina/química , Riboflavina/metabolismo , Terminologia como Assunto
20.
Sci Rep ; 11(1): 13681, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34211082

RESUMO

Phosphoprotein phosphatase (PPP) enzymes are ubiquitous proteins involved in cellular signaling pathways and other functions. Here we have traced the origin of the PPP sequences of Eukaryotes and their radiation. Using a bacterial PPP Hidden Markov Model (HMM) we uncovered "BacterialPPP-Like" sequences in Archaea. A HMM derived from eukaryotic PPP enzymes revealed additional, unique sequences in Archaea and Bacteria that were more like the eukaryotic PPP enzymes then the bacterial PPPs. These sequences formed the basis of phylogenetic tree inference and sequence structural analysis allowing the history of these sequence types to be elucidated. Our phylogenetic tree data strongly suggest that eukaryotic PPPs ultimately arose from ancestors in the Asgard archaea. We have clarified the radiation of PPPs within Eukaryotes, substantially expanding the range of known organisms with PPP subtypes (Bsu1, PP7, PPEF/RdgC) previously thought to have a more restricted distribution. Surprisingly, sequences from the Methanosarcinaceae (Euryarchaeota) form a strongly supported sister group to eukaryotic PPPs in our phylogenetic analysis. This strongly suggests an intimate association between an Asgard ancestor and that of the Methanosarcinaceae. This is highly reminiscent of the syntrophic association recently demonstrated between the cultured Lokiarchaeal species Prometheoarchaeum and a methanogenic bacterial species.


Assuntos
Archaea/enzimologia , Bactérias/enzimologia , Eucariotos/enzimologia , Fosfoproteínas Fosfatases/química , Sequência de Aminoácidos , Animais , Archaea/química , Archaea/genética , Bactérias/química , Bactérias/genética , Eucariotos/química , Eucariotos/genética , Evolução Molecular , Humanos , Fosfoproteínas Fosfatases/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...